Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density
نویسندگان
چکیده
Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led to denoised profiles which exhibited rigorously discernible phenotypic traits. Profile-specific traits could be representative of a genotype, and thus, used as a quantitative tool to associate phenotypic traits with specific genotypes. This would allow breeders to select for whole root system distributions appropriate for sustainable intensification, and inform policy for mitigating crop yield risk and food insecurity.
منابع مشابه
Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils
In a pot culture experiment, the root length density, potassium concentration in crop, and total K uptake by wheat (Triticum aestivum var. HD 2285) at different growth stages (CRIS-Crown Root Initiation Stage, MTS-Maximum Tillering Stage, FLS-Flag Leaf Stage and DFS-Dough Formation Stage) were determined. Wheat crop was grown in 72 pots containing 4.5 kg of three types of soils, namely Alfisol,...
متن کاملA comparative ideotype, yield component and cultivation value analysis for spring wheat adaptation in Finland
In this study Mixed structural covariance, Path and Cultivation Value analyses and the CERES-Wheat crop model were used to evaluate vegetation and yield component variation affecting yield potential between different highlatitude (> 60° N lat.) and mid-European (< 60° N lat.) spring wheat (Triticum aestivum L.) genotypes currently cultivated in southern Finland. Path modeling results from this ...
متن کاملتأثیر تغذیه روی در محیط آبکشت بر ترشح فیتوسیدروفور ریشه در سه رقم گندم متفاوت از لحاظ روی-کارآیی
This research was carried out in a hydroponic culture to investigate the effect of Zn nutrition on phytosiderophore release by roots of three bread wheat genotypes (Triticum aestivum L. cvs. Rushan, Kavir, and Cross) differing in Zn-efficiency. The wheat seeds were germinated in sterile sand and two weeks later the plants were transferred to nutrient solution containing different Zn levels. Phy...
متن کاملResponses of above and below-ground traits of wheat wild relative (Aegilops tauschii) and bread wheat (Triticum aestivum L.) to imposed moisture stress
The narrow genetic variation of bread wheat is one of the limitations to improve it for drought-tolerance. The research carried out to study the responses of different genotypes and traits to imposed moisture stress. The plant material comprised of 10 Aegilops tauschii accessions as well as a tolerant (BW2) and a susceptible (BW1) bread wheat cultivar. To assess the root and shoot-traits, two s...
متن کاملScreening Egyptian Wheat Genotypes for Salt Tolerance at Early Growth Stages
Parameters that show a significant genotypic variation at early growth stages and are associated with salt tolerance at later stages may be used as rapid and economic screening criteria in breeding programs. The objective of this study was to test growth parameters at early growth stages for evaluating the salt tolerance of wheat genotypes. Ten wheat genotypes that differ from their salt tolera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017